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interacting &lectron gas

non-interacting value of €] well approximates the experimentally observed bandwidth. At
the Hartree—Fock level, the bandwidth expands to

A =el(1+0.331r). (6.23)

The increase in the bandwidth, ~0.33 try, is illustrated in Fig. 6.1(b).

6.3 Cohesive energy of metals

One of the key problems to which the Hartree—Fock approximation has been applied is the
cohesive energy of a metal. When free atoms are brought together to form a metal, their
energy decreases, The cohesive energy is defined as the difference

Eeir = (€/atom)jnatal — (€/280M ) 10 ptomns !

and it is negative in a bound metal. The measured cohesive energies in the alkalis are:

eV L Na K Rb Cs

Gcnh.cxpl —i.58 —1.i3 —0.93 —0.82 -0.815

In order to caleudate cohesive energies quantitatively, two improvements beyond Hartree-
Fock need to be made. In addition to describing better the correlations among electrons, it is
necessary to go beyond the approximation that the tons form a uniform background and take
into account more precisely the interaction of the electrons with the ions and the average
Coulomb energy of the ions. We follow here the strategy of Wigner and Seitz (WS1933) to
calculate the cohesive energy of a metal, a scheme that enabled them to carry out the first
quantitative application of guantum mechanics to calculating realistic properties of solids.

6.3.1 Wigner—Seitz method

The main idea of the Wigner—Seitz method is to divide the crystal into (Wigner-Seitz} cells,
each containing a single ion and Z ¢lectrons, and to treat the interactions within each cell
reasonably accuratcly. Since each cell is electrically neutral, the interaction energy between
cells can be ignored to a first approximation. The cohesive energy is then given by

€cah = €0 — Emom + Ekin T €couls {6.24}

where € is the lowest energy of a conduction electron in the cell, physically the energy of
the bottom of the conduction band, e, 15 the average electron kinetic energy, and €qpy 18
the average electron—electron Coulemb encrgy.
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8.3 Coheasive energy of metals

At this point, we restrict our attention to the alkali metals, in which a single conduction
electron and anion reside in each cell. One can initially ignore electron—electron interactions
within each cell. Most simply, the Wigner-Seitz cell can be taken to be a sphere about the
ion. To calculate e, we solve the Schridinger equation

(Zi + V}on) @o(r) = €ogo(r) (6.25)
Fit
for the lowest conduction electron level in the presence of the ion potential. The boundary

condition at the edge of each cell is that the normal derivative @g(r) = 0.
The resulting €ps are shown in Table 6.2.

eV Li Na K Rb Cs

€xom —5.37 —5.16 —4.34 —4.17 ~3,89
€ —-0.15 —8.23 —6.58 —6.18 —5.85
€0 — €aom —3.78 —-3.09 —2.24 -2.01 —1.95

As is evident, €g — €gom < 0, tesulting from interactions between neighboring ions in a
crystal that delocalize the electrons, an effect which ultimately lowers their energy.

The simplest estimate of € assumes that the ion provides a central 1/# potential and that,
as a consequence of the exclusion principle with the core electrons, the electron cannot get
closer than aq to the central potential. Consequently,

re 2
PR f dre? (6.26)
an
3 40.82 eV 1
2r s s

We next include the kinetic energy of the conduction electrons. The kinetic energy per
electron in a free gas is given by

o _3pp 221

T 2
iS

=T - 28
kin 5 2m (6:28)

Here is a list of #; values and corresponding kinetic energies for the alkalis:

s 3.22 3.96 4.87 3.48 5.57
€kin 250 1.92 1.26 1.i2 0.97

To set the scale, we ignore Coulomb interactions and compute the cohesive energy from
just €g, Eq. (6.27), and the kinetic energy as €., & €y — €40m + €xin, and find:
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eV Li Na K Rb Cs
Goch.Nt -0.89 —1.17 -0.97 —0.89 —(.98
Eouh. expt —1.58 —1.13 —(.98 —0.82 —0.815

As is evident, our estimates of the cohesive energy at this level of theory are in fair to poor
agreement with experiment.

We now include the direct Coulomb energy, treating the electron density as uniform and
replacing each cell by a sphere of radius r.. In such a sphere, the number of electrons
enclosed in a sphere of radius r < re 18 (1) = A7 ng /3. The direct Coulomb energy is

Egirect = / dr f:—ncn(r). (6.29)
g

Evaluating the integral, we obtain

3¢ 6
€hinect = =— = T—RY. (6.30)
S5re  Srg

The interaction encrgy between neutral Wigner-Seitz cells is a higher order correction,
which can be included in a more precise calculation.

We next include the exchange Coulomb energy at the Hartree—Fock level, assumting
again that the electron density is uniform. From Eq. (6.15), the exchange energy is

0.916
€exch = ——RY. (630

¥s

The total electron—electron Coulomb energy is then

0.284
€ooul = €exch T Edirect = _I'_—RY! {(6.32)
5
and the cohesive energy becomes
€coh iF = €6 — €atom T Ekin T €coul- {6.33)

The Coulomb encrgy, together with a comparison of the new cohesive energies with the
experimental vatues (P1955), is shown below:

eV Li Na K Rb Cs
Ecoul 1.24 1.01 0.82 0.77 0.72
€eoh. HF 0.32 ~0.16 —0.13 —0.12 -0.26

Eecahexpt ~1.58 ~1.13 —0.98 —0.82 —0.82
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6.3 Cohesive energy of metals
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3 A two-dimensional {2d) Wigner lattice of electrons, Ford = 2, a triangular lattice minimizes the 1/r Coulomb

repulsion between the electrons. The arrows on each lattice site reflect the orientation of the electron spin.

Because a triangular lattice Is not bipartite, i.e., it cannet be split into two equivalent sublattices, it does not sepport
long-range antiferromagnetic order. Mente Carlo calcufations (TC1989) indicate that for r, > 37, a transition to a
Wigner sofid occurs with the spin configuration shown here. Wigner solid formation has been observed for electrons
on the surface of liquid hefium (G1979), as well in a dilute hole gas {¥1999) confined to move at the interface batween
GaAs and AlGaAs. In the presence of an external magnetic field, the Wigner crystal should be stable at higher
densities, since a magretic field tends to freeze out the electron zero-paint motion. Experiments on a dilute 2d
electron gas in a large perpendicular magnetic field (51992) afso confirm the formation of a Wigner crystal.

As is evident, while the Hartree—Fock approximation predicts that atoms in a metal are
bound, it does not give accurate quantitative predictions. In fact, the non-interacting picture,
€eoly,nil> did much better. To improve the theory, we need to include higher order electron-
electron interactions, i.e., we need to determine more precisely the effect of correlations on
the energy for a many-body system.

6.3.2 Wigner solid

Wigner's interpolation scheme {W1934), in which he treats the system at high densities
(rs — 0) perturbatively and at low densities (s — o) as a solid, is more directly applicable
to caleulating the effect of correlations on the energy of the electron gas. Wigner’s crucial
observation was that in a low-density electron gas in a uniform ion background, the electrons
should form an ordered array. The 2d analog of a Wigner crystal is shown in Fig. 6.2, The
basic idea is that, in this limit, the energy of the ground state, as a sum of kinetic and
Coulombic terms, is dominated by the Coulomb repulsion, since ey, ~ 1 /rg while eqou ~
1/rs, sothatas ry — 00, €y < €coul. TO minimize the Coulomb repulsion, the electrons find
it energetically favorable to organize themselves in an ordered array. [n three dimensions,
the most favorable array is a body-centered cubic {bec) lattice, although the face-centered
array is quite close in energy; the simple cubic array is less favorable. An antiferromagnetic
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bee lattice is stable (CA1999) for 5> 93. A transition to a ferromagnet (OHB19%9) appears
to oceur around 1 = 63.

The energy of a Wigner solid is determined entirely by the Coulomb energy. To estimate
the cnergy, we calculate the energy of a neutral Wigner—Seitz celi, this time containing
an electron in its center with a uniform ion background. As earlier, the interaction enetgy
between neutral Wigner—Seitz cefls is a higher-order correction. In a spherical cell, the
interaction energy between the uniform positive background and an electron localized at
the center is given by

Ye d 3 2
€ R~ f T2 (6.34)
0

The compensating positive background provides a uniform electrostatic energy that is
the analog of the direct Coulomb interaction determined in the earlier discussion of the
Wigner—Seitz method, Eq. (6.30), €dieer = 3¢ /5r,. The energy of the Wigner solid is
then

303\ & 9é 1.8
=l _—— —:-"-—-—E'——"R . 635
ews (5 2) Fo 10 re rs Y (6.35)

The contribution to the energy of a Wigner crystal from zero-point fluctuations of the
electrons around their equilibrium positions falls off as 1 /3% (Problem 6.5) and need not
be included in extracting a first approximation to the correlation energy.

In order to identify fhe correlation energy in the Wigner solid, we write

~0.916 0.884
€ws = €exch + Ecorr = (——“' - —-—") Ry. (6.36)
Fs s
For large i+, the correlation energy is thus
0.884
€corr & ———RY, s —+ 00, (6.37)
s

In the high-density regime, one can resort to the perturbative treatment of Gell-Mann and
Brueckner (GB1957). In perturbation theory, the second-order term in the electron—glectron
interaction is of the form

ED Z (plnciﬂ'}(ﬂl-l/cew} , (6.38)

E—E
n 07 =u
where |1} is an intermediate excited state. All terms in the perturbative expansion can be
represented diagrammatically, as can be shown using Wick’s theorem, The second-order
diagrams that enter are of the form shown in Fig, 6.3.
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(o-of + (=

00 - (X

| Secend-order correlation diagrams in a perturbation expansion for the ground state energy of the uniform electron

gas. The solid lines indicate electrons, znd the dashed lines represent the two-body Coslomb interaction.

The last diagram in Fig. 6.3, the exchange term involving just a single electron loop,
is logarithmically divergent. Gell-Mann and Brueckner (GB1957) recognized that by
clever resummation of a whole class of such divergent terms, they could get a finite
but non-analytic result. Indeed, they found an expansion for the energy of the electron

gas,

221 0916
O ( = = ? +0.062Inr; — 0,096 + ) Ry. (6.39)
5 s

Note the presence of the non-analytic term In#;. This term reflects the fact that the energy
of the system cannot be analytic in ¢* about € = 0; indeed, the physics of a system of
electrons with * < 0 is that of a self-gravitating cloud, and is qualitatively different from
that with ¢ > 0. The problem with applying perturbation theory, even in its resummed
form, is that real metals lie in the region of ¢ > 1, and hience one would have to sum the
entire series to have quantitatively accurate results. it is customary to define the correlation
energy by writing the energy of the electron system in the form

€ = €xin + €exch + Ecorrs (6.40)

thus the Gell-Mann and Brueckner result for the correlation energy in the high-density limit
is

€oorr = 0,062 1In 7 — 0.096, r; — 0. (6.41)

Taking €corr = —0.096 Ry at re == 1, we may write, in the spirit of Wigner, a simple
approximate interpolation between the high- and low-density results;

0.834 12.03

———— Ry = —w——gV, 42
rs+8.21 Y i's—§—8.2le (6:42)

€egrr = —

As Pines (P1955} has pointed out, the correlation energy at »; = 1 is closer to —0.11 Ry.
Nonetheless, we work within the perturbative scheme (GB1937) and use Eq. (6.42) as the
interpoiation formula for the correlation energy. With Eq. (6.42), we obtain the correlation
and cohesive energies:
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eV Li Na [< Rb Cs

Eemnr —-0.7 -1.15 —1.07 —1.02 ~1.47
€col, W —1.64 —1.15 —1.02 —0.96 -0.92
Ecatr.expt —1.58 —513 —0.98 —().82 —(.815

The improvement with the use of Wigner interpolation is marked.

However, while Eq. (6.42) is a useful interpolation formula for the cohesive cnergy, the
Wigner scheme implicitly assumes that no new phases of the clectron gas appear between
the dense perturbative limit and the crystalline regime. There is really no basis for this
assumption. In fact, one of the unsolved problems in solid state physics is what phase
of matter arises when a Wigner crystal melts. As perturbation theory cannot be used at
the Wigner melting boundary, this problem has no easy resolution. At the writing of this
chapter, experiments on a dilute two-dimensional clectron gas (K 1999} indicate that this
phase is exotic,

Summary

We have shown in this chapter how the Hartrec—Fock procedure can be implemented in
the context of the electron gas in a compensating positive background. The key result is
that the eigenfunctions are plane waves, but the single-particle energy levels arc lowered by
the exchange interaction. The exchange interaction produces a diminished electron density
around each electron. The Hartree—Fock description, however, does not describe accurately
the bandwidth or the specific heat, leading to a 7/In T behavior in the latter quantity. In
Chapter 9, we show how inclusion of electron screening remedies some of the failures of
Hartree--Fock. To make accurate estimates of the cohesive energy of crystals, the Wigner
interpolation scheme is quite successful. The underlying physics in this scheme is that at
sufficiently low densities, an ordered electron lattice minimizes the energy of the electron
oas. Ind = 3, abcc lattice is favored, while ind = 2,a triangular lattice of clectrons forms.

Problems

6.1 Show that

1 dp  &pp
zfn € (P) iy = Tamie

6.2 Assuming the Hartree-Fock expression for the specific heal of an electron gas,
~T/]in T|. determine the temperature for Na befow which corrections to the lincar
specific heat would become significant (10% say).
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